

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUL DE MINAS GERAIS

CONCURSO PÚBLICO DE DOCENTES DO QUADRO EFETIVO EDITAL 03/2013

PROVA ESCRITA

INSTRUÇÕES AO CANDIDATO:

- 1) A Prova Escrita constará de 40 questões objetivas (2,5 pontos cada) com quatro (04) alternativas para a resposta, sendo que somente uma estará correta. A prova terá o valor de 100 (cem) pontos, com peso 2 (dois).
- 2) O candidato poderá usar régua de cálculo, calculadora comum ou calculadora científica não programável para a realização da Prova Escrita.
- 3) A prova terá duração de quatro horas.
- 4) Os dados necessários a resolução dos exercícios estão no final da prova (tabela periódica e constantes). OBS: Qualquer outro dado que não estiver presente na avaliação pressupõe-se que deve ser de conhecimento do (a) candidato (a).

CARGO: QUÍMICA I – QUÍMICA ANALÍTICA E ANÁLISE INSTRUMENTAL

(QUESTÃO – 1): Uma análise espectrofotométrica foi realizada numa certa amostra para determinação do teor de cobre. Os seguintes procedimentos foram adotados:

- 1- Pesou-se 9,000 g de amostra e a mesma foi tratada com ácido sulfúrico em recipiente adequado (convertendo todo o cobre em CuSO₄).
- 2- Todo o conteúdo do procedimento 1 foi transferido para um balão volumétrico 200mL e completado com água.
- 3- Uma alíquota da solução obtida em 2 foi usada para leitura direta no espectrofotômetro.
- 4- Uma curva analítica foi construída com um reagente de CuSO₄ para determinação do teor de cobre na amostra.

As absorbâncias dos pontos da curva e da amostra foram obtidas no comprimento de onda igual a 670 nm. Os dados obtidos foram:

[CuSO ₄]/ mol.L ⁻¹	ABSORVÂNCIA
0,00	0,000
0,10	0,355
0,20	0,723
0,30	1,025
0,40	1,435
0,50	1,756
Amostra	0,850

Admitindo-se que a única espécie absorvente em 670 nm pós-tratamento advém apenas do sulfato de cobre formado e o "branco" tem valor igual à zero, o teor de cobre (%m/m) na amostra é de:

- a) 30,0
- b) 32,0

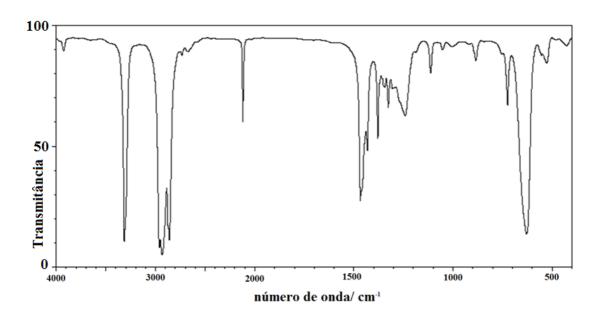
- c) 34,0
- d) 36,0

(QUESTÃO – 2): Considere uma **solução A** que apresenta 82% de transmitância numa cubeta de 1,5cm de caminho ótico. A alternativa que representa o comprimento da cubeta (caminho ótico) para que se tenha 82% de transmitância triplicando-se a concentração da Solução A é (A solução segue a lei de Lambert-Beer):

- a) 0,5cm
- b) 1,0cm
- c) 1,5cm
- d) 2,0cm

(QUESTÃO – 3): A absortividade molar de certo **composto A** em 370 nm é igual a 3200 cm⁻¹/(mol/L). A faixa linear adequada para quantificação deste composto é de 0,05 – 0,90 de absorbância. Três amostras líquidas distintas foram submetidas a medidas de absorbância no comprimento de onda supracitado usando uma cubeta de 15 mm de caminho ótico. Os dados obtidos por espectrofotometria estão na tabela abaixo:

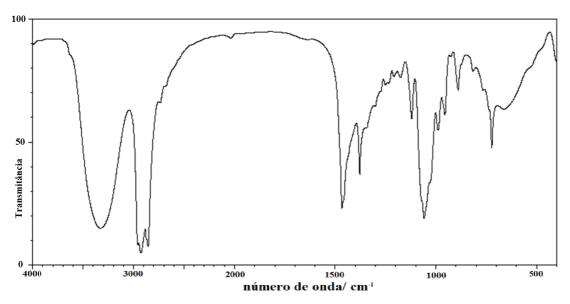
AMOSTRA	ABSORBÂNCIA
1	0,33
2	0,48
3	0,70


Considerando que a absorbância exibida na tabela é oriunda apenas do **composto A**, a concentração (mmol/L) deste composto nas amostras 1, 2 e 3 são, respectivamente:

- a) 0,0101; 0,150; 0,180
- b) 0,0701; 0,155; 0,162
- c) 0,0690; 0,100; 0,146
- d) 0,0700; 0,120; 0,156

(QUESTÃO – 4): A respeito da espectrofotometria UV/VIS é incorreto afirmar que:

- a) Pode ser usada para determinação de certos grupos funcionais.
- b) É possível determinar a quantidade de compostos em misturas em virtude do efeito aditivo das absorbâncias.
- c) A técnica pode ser usada para experimentos envolvendo cinética de reação.
- d) Após a utilização da espectrofotometria UV/VIS a amostra não pode ser usada, pois ocorre degradação da amostra.

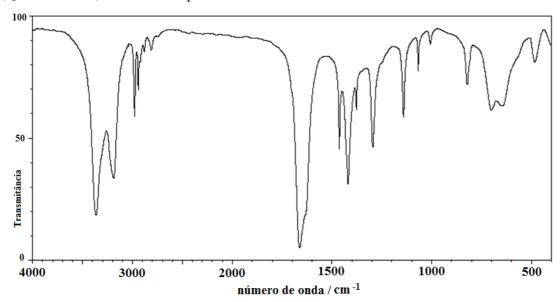

(QUESTÃO − 5): Considere espectro de infravermelho abaixo:

Pode-se afirmar que o composto referente ao espectro acima é:

- a) 4-Octino
- b) 1-hexeno
- c) 1-Octino
- d) 3-hexeno

(QUESTÃO – 6): Um reagente extremamente puro teve seu rótulo rasurado e as informações a respeito do nome, massa molar e fórmula química foram perdidas. A fim de identificar o reagente uma pequena amostra foi submetida a uma análise por infravermelho. O espectro obtido foi:

Pode-se afirmar que o reagente referente ao espectro acima é:


- a) Pentanal
- b) 1 Hexanol
- c) 2 Pentanona

d) 2 - Butino

(QUESTÃO – 7): Em relação à espectroscopia no infravermelho é incorreto afirmar que:

- a) O pico referente a uma carbonila é frequentemente o mais forte do espectro e possui largura média.
- b) Em geral, as bandas de ligações triplas ocorrem em números de ondas maiores que as bandas de ligações duplas.
- c) Apenas ligações que possuem um momento de dipolo que muda como uma função tempo exibe absorção no infravermelho.
- d) Moléculas longas de hidrocarbonetos do tipo CH₃(CH₂)_xCH₃, com X > 5, apresentam uma banda de vibração característica, "banda de cadeia ou vibração esqueletal", na faixa de 1500 1700 cm⁻¹.

(QUESTÃO – 8): Analise o espectro abaixo:

Pode-se afirmar que o espectro acima se refere a uma:

- a) Amida
- b) Amina
- c) Ácido Carboxílico
- d) Álcool

(QUESTÃO – 9): Considere o rótulo do reagente abaixo para calcular qual será o volume de ácido clorídrico concentrado que deverá ser usado para preparar 250,0mL de solução de ácido clorídrico na concentração de 0,5 mol.L⁻¹.

Características	Mínimo	Máximo	Unidade
Concentração	37,00		(% m/m)
Densidade a 20°C	1,180		g/mL
Cloro livre		1,00	mg/l
Ferro		0,2	mg/l
Mercúrio		0,50	mg/l
Cor		10	APHA

O volume necessário é de:

- a) 10,45mL
- b) 9,35mL
- c) 11,25mL
- d) 13,65mL

(QUESTÃO – 10): Uma amostra pesando 5,00g foi previamente diluída em água e submetida a um ensaio volumétrico para determinação do teor de carbonato de sódio e bicarbonato de sódio. A titulação foi basicamente "dividida" em duas etapas, de modo que primeira etapa utilizou-se o indicador de fenolftaleína e na segunda etapa utilizou-se o indicador de alaranjado de metila. Na primeira etapa foram gastos 15,80mL de ácido clorídrico padronizado de concentração igual a 0,1 mol.L⁻¹. Na segunda etapa gastou-se 25,20mL do mesmo ácido para determinação do ponto final da titulação (considere que toda a amostra foi usada para esta titulação). Suponha que o ácido reagiu apenas com os sais citados anteriormente. A alternativa que representa, respectivamente, o teor de carbonato de sódio e bicarbonato de sódio em %m/m é:

- a) 1,79 e 2,55
- b) 1,89 e 1,55
- c) 3,15 e 1,75
- d) 3,35 e 1,58

(QUESTÃO – 11): O padrão primário é uma substância extremamente importante em química analítica e é usada como material de referência em titulações. Assinale a alternativa incorreta em relação ao padrão primário:

- a) Deve possuir elevado grau de pureza.
- b) Deve ser estável a atmosfera e de preferência ter baixo custo.
- c) Deve possuir massa molar baixa e boa solubilidade no meio de titulação.
- d) A precisão do método de análise depende criticamente deste padrão.

(QUESTÃO – 12): Duas amostras aquosas distintas, sulfato ferroso e peróxido de hidrogênio, foram encaminhados para análise em laboratório. Os seguintes procedimentos foram realizados

determinação da concentração de seus respectivos analitos de interesse:

- 1) A amostra 1 é uma solução contendo apenas **sulfato ferroso** diluído em água. Para a realização da titulação foram tomados 10,00mL da amostra 1. A titulação ocorreu em meio ácido e foram consumidos 37,20mL de permanganato de potássio padronizado de concentração igual a 0,02 mol.L⁻¹ para atingir o ponto final da titulação.
- 2) A amostra 2 é uma solução contendo apenas **peróxido de hidrogênio** diluído em água. Para a realização da titulação foram tomados 10,00mL da amostra 1. A titulação ocorreu em meio ácido e foram consumidos 25,30mL de permanganato de potássio padronizado de concentração igual a 0,02 mol.L⁻¹ para atingir o ponto final da titulação.

Após realizar os devidos cálculos pode-se afirmar que a concentração, em g/L, de sulfato ferroso (amostra 1) e peróxido de hidrogênio (amostra 2) são, respectivamente:

- a) 82,32 e 7,85
- b) 56,51 e 4,30
- c) 36,21 e 3,20
- d) 42,43 e 3,54

(QUESTÃO – 13): Deseja-se preparar uma solução tampão com pH = 9,00 a partir de 50mL de solução de NH₄C ℓ (cloreto de amônio) 0,1 mol.L⁻¹. Para isso deve-se adicionar um volume adequado de uma solução de NaOH 0,10 mol.L⁻¹. O volume de NaOH que deve ser adicionado aos 50mL da solução de NH₄C ℓ esta expresso na alternativa:

- a) 15,8mL
- b) 18,2mL
- c) 21,4mL
- d) 23,7mL

(QUESTÃO – 14): A massa de sulfato de bário, em microgramas, que pode ser solubilizada em 500mL de solução de nitrato de bário 0,01 mol.L⁻¹, à 25°C, é de:

- a) 4,21
- b) 3,12
- c) 2,25
- d) 1,28

(QUESTÃO – 15): O pH de uma solução de ácido acético de concentração igual 0,015 mol.L⁻¹ será de:

- a) 3,28
- b) 2,45
- c) 1,25
- d) 4,31

(QUESTÃO – 16): A reação entre o Nitrogênio (N_2) e Hidrogênio (H_2), ambos no estado gasoso, formando a amônia gasosa e liberando energia ($\Delta H < 0$). As variáveis inerentes ao sistema como

pressão, temperatura, concentração e outros podem ser controladas. Considerando que a mistura destes gases estejam no estado de equilíbrio é incorreto afirmar que:

- a) Se a mistura for comprimida haverá aumento do número de moléculas de amônia.
- b) A elevação da temperatura promoverá o aumento da quantidade de moléculas de N₂.
- c) O aumento da concentração de H₂ ocasionará o aumento da quantidade de moléculas de N₂.
- d) O aumento da concentração de NH_3 irá promover a elevação do número de moléculas de H_2 e N_2 .

(QUESTÃO – 17): São equipamentos indicados para coletar amostras de águas superficiais e sedimentos, respectivamente:

- a) Garrafa de van Dorn e Pegador Ekman-Birge
- b) Balde de aço inox e Batiscafo
- c) Garrafa de Niskin e Coletor com braço retrátil
- d) Pegador Ekman-Birge e Pegador Shipek

(QUESTÃO – 18): Sobre preparo de amostras para análises espectroscópicas são realizadas as seguintes afirmações:

- I Substâncias que não se dissolvem em ácidos geralmente podem ser dissolvidas em um fundente inorgânico, suficientemente quente para estar fundido.
- II Os ácidos não oxidantes (HCl, HBr, HF, H₃PO₄, H₂SO₄ diluído e HClO₄ diluído) dissolvem muitos metais por meio de uma reação redox.
- III As substâncias que não se dissolvem em ácidos não oxidantes podem ser dissolvidas em ácidos oxidantes como o HNO₃, o H₂SO₄ concentrado a quente ou o HClO₄ concentrado a quente.
- IV O ácido fluorídrico quente é especialmente útil na dissolução de silicatos.

É correto afirmar que:

- a) Apenas as afirmações I e IV são verdadeiras.
- b) Apenas as afirmações III e IV são verdadeiras.
- c) Apenas as afirmações II, III e IV são verdadeiras.
- d) Todas as afirmações são verdadeiras.

(QUESTÃO – 19): Uma mistura de ácidos muito utilizada em laboratório para dissolver materiais é conhecida como água régia. A água régia é:

- a) Uma mistura 3:1 (v/v) de HNO₃:HCl
- b) Uma mistura 3:1 (v/v) de HCl:HNO₃
- c) Uma mistura 3:1 (v/v) de HClO₄:HCl
- d) Uma mistura 3:1 (v/v) de H₂SO₄:HNO₃

(QUESTÃO – 20): O material particulado atmosférico tem recebido atenção devido a problemas que causam à saúde humana. É correto afirmar que:

- a) Podem ser amostrados apenas em ambientes externos (*outdoor*).
- b) A sua amostragem deve ser realizada num tempo máximo de 60 minutos.
- c) Podem ser amostrados com equipamentos que diferenciam o tamanho das partículas.
- d) Não é possível estarem associados aos metais.

(QUESTÃO – 21): Sobre cromatografia líquida são realizadas as seguintes afirmações:

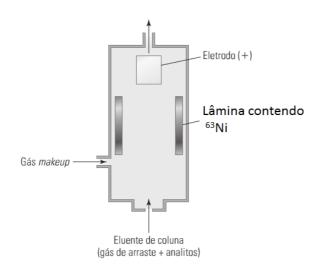
- I A cromatografia líquida é uma técnica analítica na qual a fase móvel é um líquido.
- II Esse tipo de cromatografia foi inicialmente desenvolvida pelo botânico russo Mikhail Tswett.
- III A cromatografia de partição é uma técnica cromatográfica na qual os solutos são separados com base em sua partição entre uma fase móvel líquida e uma fase estacionária revestida em um suporte sólido.
- IV A sílica é o suporte mais popular em cromatografia de fase normal.

É correto afirmar que:

- a) Apenas as afirmações I e II são verdadeiras.
- b) Apenas as afirmações II e IV são verdadeiras.
- c) Apenas as afirmações I, II e IV são verdadeiras.
- d) Todas as afirmações são verdadeiras.

(QUESTÃO – 22): Sobre a cromatografia líquida são realizadas as seguintes afirmações:

- I Existem duas categorias principais de cromatografia: a cromatografia de fase normal e a cromatografia de fase reversa.
- II A cromatografia de fase normal é um tipo de cromatografia que usa fase estacionária polar.
- III A fase estacionária cianopropil (suporte-CH₂-CH₂-CH₂-CN) é um exemplo de fase reversa utilizada em cromatografia.
- IV-As fases estacionárias aminopropil (suporte- $CH_2-CH_2-CH_2-NH_2$) e octadecil (suporte- $(CH_2)_{17}-CH_3$) são exemplos de fase reversa utilizadas em cromatografia.


É correto afirmar que:

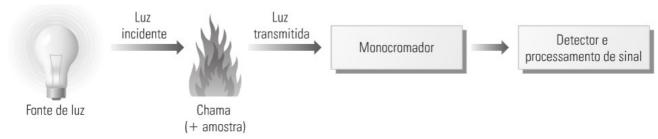
- a) Apenas as afirmações I, II e III são verdadeiras.
- b) Apenas as afirmações I e II são verdadeiras.
- c) Apenas as afirmações I, II e IV são verdadeiras.
- d) Apenas as afirmações II e III são verdadeiras.

(QUESTÃO – 23): Sobre cromatografia gasosa (CG) é falso afirmar que:

- a) Hidrogênio (H₂) é o gás de arraste mais utilizado em cromatografia gasosa acoplada à espectrometria de massas (CG/EM).
- b) Hidrogênio (H₂), hélio (He), nitrogênio (N₂) e argônio (Ar) são gases de arraste comumente usados em CG.
- c) Oxigênio (O₂) é uma impureza que pode ser encontrada nos gases de arraste.
- d) O gás de arraste deve ter sempre um alto grau de pureza para evitar contaminação ou danos à coluna e ao sistema de CG.

(QUESTÃO – 24): A figura abaixo apresenta um esquema de um detector muito utilizado em cromatografia gasosa.

(Figura adaptada de: Hage, D.S. & Carr, J.D. Química analítica e análise quantitativa. 1ª Ed. – São Paulo: Pearson Prentice Hall, 2012)


Trata-se do:

- a) Detector de condutividade térmica.
- b) Detector de nitrogênio e fósforo.
- c) Detector de ionização de chama.
- d) Detector de captura de elétrons.

(QUESTÃO – 25): A chama, num espectrômetro de absorção atômica tem como principal função a:

- a) Combustão da amostra.
- b) Vaporização da amostra.
- c) Atomização da amostra.
- d) Ebulição da amostra.

(QUESTÃO – 26): A figura abaixo apresenta a configuração geral de um instrumento para realização de:

(Hage, D.S. & Carr, J.D. Química analítica e análise quantitativa. 1ª Ed. – São Paulo: Pearson Prentice Hall, 2012)

- a) Espectroscopia de emissão atômica.
- b) Espectroscopia de fluorescência atômica.
- c) Espectroscopia de absorção atômica.
- d) Espectroscopia de quimioluminescência atômica.

(QUESTÃO – 27): Sobre as interferências em espectroscopia atômica é falso afirmar que:

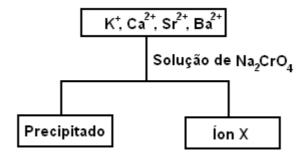
- a) A interferência espectral refere-se à superposição do sinal do analito aos sinais devidos a outros elementos ou moléculas presentes na amostra, ou aos sinais provenientes da chama ou do forno.
- b) Supressores de ionização são produtos químicos que são adicionados a uma amostra para diminuir a interferência química. O EDTA é um exemplo de supressor de ionização.
- c) A interferência química é causada por qualquer constituinte da amostra que diminua a extensão de atomização do analito.
- d) A interferência da chama pode ser subtraída utilizando-se as correções da radiação de fundo de deutério (D_2) ou Zeeman.

(QUESTÃO – 28): Sobre o forno de grafite utilizado em espectroscopia de absorção atômica são realizadas as afirmações abaixo. É falso afirmar que:

- a) Um forno de grafite, aquecido eletricamente, geralmente oferece limites de detecção maiores do que a oferecida pela chama.
- b) Geralmente há necessidade de menor quantidade de amostra quando se utiliza o forno de grafite.
- c) Geralmente na espectroscopia de chama o tempo de residência do analito no caminho óptico é menor do que no forno de grafite.
- d) A temperatura do forno de grafite pode ser programada.

(QUESTÃO – 29): A dimetilglioxima é um reagente específico que precipita em meio alcalino apenas o íon:

- a) Ni²⁺
- b) Co²⁺
- c) Cu²⁺
- d) Ra


(QUESTÃO – 30): Na identificação de nitrato há formação de um anel marrom na solução. Assinale a alternativa correspondendo a substância que é formada.

- a) $[Fe(NO)]^{3+}$
- b) [Cu(NO)]²⁺
- c) $[Cu(NO)]^+$
- d) $[Fe(NO)]^{2+}$

(QUESTÃO – 31): Sobre a determinação de cátions, assinale a alternativa incorreta.

- a) Íons Na⁺, quando expostos à chama do Bico de Bunsen, formam uma chama amarela.
- b) Íons Fe³⁺ formam um complexo vermelho com íons CN⁻.
- c) É possível determinar K⁺ com ClO₄.
- d) Íons Cd²⁺ formam um precipitado amarelo de CdS quando tratados com H₂S.

(QUESTÃO – 32): Considere a seguinte análise qualitativa dos seguintes íons:

O íon X é:

- a) K⁺
- b) Ba²⁺
- c) Ca²⁺
- d) Sr^{2+}

(QUESTÃO – 33): Considere as seguintes semi-reações a 25°C:

$$Ag^{+} + e^{-} \longrightarrow Ag^{\circ}$$
 $E^{\circ} = +0,799 \text{ V}$
 $Cu^{2+} + 2 e^{-} \longrightarrow Cu^{\circ}$ $E^{\circ} = +0,337 \text{ V}$

Podemos afirmar que:

- a) A reação global apresenta $E^{\circ} = 1,136 \text{ V}$.
- b) O agente oxidante é o cobre.
- c) O cobre é oxidado.
- d) Deve-se multiplicar a semi-reação da prata por 2 para encontrar o E° da reação global.

(QUESTÃO – 34): A respeito dos métodos voltamétricos, assinale a alternativa incorreta:

- a) A técnica se baseia na medida da corrente em função do potencial aplicado a um pequeno eletrodo.
- b) Um processo eletroquímico tal como A + ne⁻ P é dito reversível se a equação de Nernst for obedecida sob as condições do experimento.
- c) O voltamograma é um gráfico de corrente em função do potencial aplicado a um eletrodo de trabalho.
- d) O potencial de meia onda é proporcional à concentração do analito e é empregado na análise quantitativa.

(QUESTÃO – 35): Uma titulação potenciométrica consistiu de 50,00 mL de Fe²⁺ 0,0500 mol L⁻¹ com MnO₄⁻ 0,1000 mol L⁻¹ em meio ácido de 1,00 mol L⁻¹. Os dados dos potenciais formais são: E° MnO₄⁻/Mn²⁺ = 1,51 V ; E° Fe³⁺/Fe²⁺ = 0,68 V.

O potencial (E) após a adição de 6,00 mL de MnO₄ é:

- a) 1,30 V
- b) 1,45 V
- c) 1,50 V
- d) 1,25 V

(QUESTÃO – 36): Uma corrente constante de 0,800 A foi usada para depositar cobre (63,5 g mol⁻¹) em um cátodo. A quantidade em gramas de cobre depositado após 15,2 minutos é:

- a) 0,480
- b) 0,240
- c) 0,120
- d) 0,060

(QUESTÃO – 37): Um novo material orgânico deve ser examinado por análise de combustão. A queima de 0,09303 g da amostra na presença de oxigênio em excesso gera um aumento em massa de 0,04256 g em um cartucho de perclorato de magnésio e de 0,1387 g em um cartucho de ascarite. O carbono, o hidrogênio e o oxigênio são os únicos elementos presentes.

```
C_xH_yO_2 + O_2 \longrightarrow x CO_2 + y/2 H_2O

C - 12,01 \text{ g/mol} \quad H - 1,007 \text{ g/mol} \quad O - 15,99 \text{ g/mol}

A porcentagem de carbono (C) na amostra é:
```

- a) 5%
- b) 41%
- c) 55%
- d) 78%

(QUESTÃO – 38): A respeito dos métodos termogravimétricos (TG), assinale a alternativa incorreta.

- a) Esta técnica pode medir a diferença no fluxo de calor na substância e referência como uma função da temperatura da amostra.
- b) Os instrumentos são compostos de: balança analítica sensível, forno, sistema de gás de purga e microcomputador/microprocessador.
- c) Dentre as aplicações da técnica, podemos citar: reações de decomposição e de oxidação, processos físicos como vaporização, sublimação e desorção.
- d) Em uma análise de TG, a massa de uma amostra é registrada como função da temperatura ou do tempo.

(QUESTÃO - 39): Sobre as condições preferidas para formação de precipitados para análise

quantitativa, assinale a alternativa incorreta.

- a) Utilizar soluções concentradas.
- b) Adicionar o precipitante lentamente, com agitação.
- c) Usar soluções quentes.
- d) Utilizar o tempo ótimo de digestão.

(QUESTÃO – 40): A respeito dos mecanismos de formação do precipitado é correto afirmar:

- a) A equação que rege a supersaturação relativa é a Equação de Van Deemter.
- b) Devemos manter a relação (Q-S)/S grande para uma análise quantitativa, onde Q é a concentração do soluto em qualquer instante e S a solubilidade no equilíbrio.
- c) A predominância do processo de nucleação na precipitação forma grande número de partículas muito pequenas.
- d) O controle de pH não é importante na formação do precipitado.

DADOS

$$\begin{split} K_w &= 1.0 \text{ x } 10^{\text{-}14} \\ K_{ps} & (\text{sulfato de bário}) = 1.1 \text{ x } 10^{\text{-}10} \\ K_a & (\text{ácido acético}) = 1.8 \text{ x } 10^{\text{-}5} \\ K_a & (NH_4Cl) = 5.7 \text{ x } 10^{\text{-}10} \end{split}$$

- I 5	2										13	7	15	16	17	4.5 5.6 6.6
13000	4 (2	9	7	æ (o i	9:
6,94	9.01										10.8	15°0	Z 7	0 1	190	Ne 202
╀	12									10	13	14	15	16	17	18
_	Mg										¥	S	۵	S	:0	Ā
	24,3 3	4	2	9	7	80	6	10	F	12	27.0	28,1	31,0	32,1	35,5	39,8
19		22	23	24	25	56	27	28	53	30	31	32	33	35	35	36
	Ca	F	>	ប់	Mn	Fe	ပိ	z	ಪ	Z	Ga	Ge	As	Se	ă	호
200		en i	6.03	52,0	54,9	55,8	58,9	58.7	63,5	65,4	69.7	72,6	74,9	79,0	6'62	83,8
	38 39	40	41	42	43	44	45	46	47	48	49	20	51	25	53	54
0583	88	Zr	g	Mo	ည	Z	뫈	Pd	Ag	ၓ	ᄪ	S	Sp	Тe	_	Xe
85,5	87,6 88,9	00	92,9	6'98	(96)	101	103	106	108	112	115	119	122	128	127	131
2	56 57.71		73	74	75	92	11	78	79	80	81	82	83	18	82	98
cs	Ba Série dos	Ī	<u>L</u>	≥	Re	ő	_	ď	Au	물	F	РР	ä	Ъ	¥	S
33	7.00		181	184	186	190	192	195	197	201	204	207	209	(209)	(210)	(222
87			105	106	107	108	109	110	111			- CO				
ŭ	Ra Série dos	Z.	g	Sg	В	Hs	ĭ	S	Rg							
(223)	(226) Actinidit		(262)	(266)	(264)	(277)	(268)	(271)	(272)							
		Série do:	Série dos Lantanídios	los												
		24	28	59	09	61	62	63	64	65	99	67	68	69	02	71
Numero	Numero Atomico	La	Çe	ď	ž	F	Sm	ш	g	1	à	유	ш	Ē	χp	Ξ
Sim	Simbolo	139	140	141	144	(145)	150	152	157	159	163	165	167	169	173	175
Massa	Massa Atômica	Série do:	Série dos Actinídios	40												
de u = (ob sassa de na ()	89	06	91	92	93	94	98	96	26	98	66	100	101	102	103
ótopo m.	isótopo mais estável	Ac	두%	Pa	n N	Np 737	Pu	Am 243	E É	BK CAZ	250	Es (252)	Fm (257)	Md (956)	No (259)	Lr (262)
		-	404		200	1			1	1	1	1		(1	-

FONTE:chttp://www.universitariobrasil.com.br/ucFrame2.aspx?Action=Texto&IDTexto=111&IDP rova=65, acessado no dia 20/07/2013.